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Abstract—Postbuckling solutions are obtained for multilayered strip delamination models subjected
to in-plane compression, bidirectional bending, twisting, and a temperature load that may vary
arbitrarily in the thickness direction. The differential equations of equilibrium, the end conditions
and the continuity conditions at the junction of the sublaminates are reduced to a system of algebraic
equations governing the deformation parameters. Besides providing closed-form postbuckling solu-
tions, these equations also reveal explicitly the effects on buckling due to various factors including
delamination geometry, anisotropic elastic and thermal expansion coefficients, in-plane force and
strain loads, bending and twisting curvatures, and the temperature field. A simple expression is
given for the energy release rate in terms of the mid-plane strains and the curvatures of the
sublaminates at the delamination front. A moderate temperature gradient in the thickness direction
may severely aggravate the postbuckling deformation and increase the energy release rate. © 1998

Elsevier Science Ltd. All rights reserved.
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NOMENCLATURE

Cartesian coordinates referred to the center of the laminate
thickness coordinate referred to the middle plane of a sublaminate
in-plane components of the stress

temperature load

temperature on the top and bottom surfaces of the laminate
in-plane stiffness matrix of the kth layer

in-plane thermal expansion coefficients of the kth layer

thickness of the intact and disbonded sublaminates

length of the laminate and of the delamination

extensional stiffness matrix

bending-extension coupling matrix

bending and twisting stiffness matrix

stiffness matrices of the lower disbonded sublaminate

stiffness matrices of the upper disbonded sublaminate
sublaminate properties defined by eqns (11), (17), etc.
sublaminate properties defined by eqns (12), (14), etc.

middle plane strains of the sublaminates

middle plane curvatures of the sublaminates

curvature loads imposed on the delamination model

in-plane normal and shearing forces

bending and twisting moments

thermal forces

thermal moments

effective forces defined by eqns (13), (19) and (20)

deflections

deformation parameters of the intact sublaminate [eqn (3a,b,c)}
deformation parameters of the lower sublaminate [eqn (3d,e,f)]
deformation parameters of the upper sublaminate [eqn (3g,h.i)]

P=—-N.=D&y, P=-N.=D(n> S=N,

normalized axial compression load
strain energy release rate
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[. INTRODUCTION

Buckling and postbuckling behavior of composite beams and plates with internal delami-
nations have been the object of intensive research in the past decade (Garg, 1988 ; Storakers,
1989). Although hygrothermal loads, in addition to mechanical loads, may aggravate the
instability of composite laminates with interfacial defects, their effects on the delamination
problem have not been systematically investigated. It was shown in a recent analytical study
that a delaminated thin layer on the hot surface of a non-uniformly heated plate may be
particularly vulnerable to the initiation of local buckling (Yin, 1994). The study was based
on the solutions of the linearized equilibrium equation for a multilayered strip delamination
model subjected to a temperature load that may vary arbitrarily in the thickness direction.
The simplicity of the formulation (using laminated plate theory and von Karman’s strain—
displacement relations) and of the resulting analytical expressions allows the effects of
anisotropic stifiness parameters, thermal expansion coefficients and mechanical and thermal
loads to be separately examined. One finds that drastic reduction in the bifurcation loads
may result from a temperature gradient in the thickness direction, and that bending-
stretching coupling of the sublaminate stiffness contributes significantly to the instability
of the model.

As pointed out in an earlier study, a composite laminate with a shallow delamination
may buckle in a local mode under a relatively small compression load (Yin ef al., 1986).
Large deflection with severe peeling and shearing actions near the crack front may not arise
until the axial load increases significantly beyond its critical value at bifurcation. Therefore,
the bifurcation load is usually not an indication of the load carrying capacity of the
delaminated plate. An assessment of the detrimental effects of delamination damage and
crack growth requires the solution of nonlinear governing equations in a relatively advanced
postbuckling stage.

In the following section, the kinematical formulation of a previous paper (Yin, 1994)
for cylindrical buckling of laminated strip delamination models will be extended to accom-
modate bidirectional bending and twisting of the sublaminates. This extension is required
because even a uniform temperature load may cause bending and twisting in an unbalanced
laminate, so that the usual assumption of cylindrical (plane strain) deformation is generally
not valid. While the previous study leads to an eigenvalue problem and a characteristic
equation associated with the linearized problem of bifurcation, the present analysis reduces
the thermoelastic postbuckling problem to a system of three algebraic equations governing
a reduced set of deformation parameters, i.e., eqns (23)—(25) for the three parameters 8, 1
and 4. Besides providing exact postbuckling solutions based on the nonlinear strain—
displacement relation of the von Karman plate theory, these equations also allow the effects
of all anisotropic sublaminate stiffness matrices, the thermal expansion coefficients and the
thermal and mechanical loads to be examined separately, or in combination, in connection
with the postbuckling deformation.

Solutions are computed for several delamination models (homogeneous and isotropic;
laminated with cross-ply or angle-ply configurations) with various combinations of the
length and depth of delamination and mechanical and temperature loads. The energy
release rate associated with postbuckling delamination growth is evaluated by using an
exact general expression in terms of the sublaminate strains and curvatures at the delami-
nation front.

2. GENERALIZED 2-D DEFORMATION OF THE STRIP DELAMINATION MODEL

Consider a laminated beam-plate of thickness 7 and axial length 2L containing an
across-the-width delamination of length 2a at a depth % beneath the upper surface. The
delamination is assumed to be located symmetrically with respect to the two clamped ends
of the laminate (Fig. 1). Let [4,], [B;] and [D,] denote the stiffness matrices of the intact
segment, and let [4,], [B;] and [D,] and [4,], [B,] and [D,] stand, respectively, for the
corresponding matrices of the lower and upper delaminated sublaminates. The following
equalities are easily established (where H = t—h):
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Fig. 1. One-dimensional delamination model.

Ay =A;+A4;, By;=B,+B;+A4,h2—A,;H]2,

D, = Dy+Dy+ Byh— B, H+ A, k2[4 + A,H? 4. (1)

The delamination model is subjected to an axial compressive load— N, = P, an in-
plane shearing force N,, = § and a bending moment M, = M at its two ends, x = L. In
addition, a temperature load 7(z) is applied. The temperature load, by itself or in con-
junction with mechanical edge loads, generally causes extension, bending and twisting of
the anisotropic laminate. Hence, besides P, S and M, three additional parameters are
NIRRT "R SYRPRRE) SRR "’i’ﬁ"o"’%f& U RAng U GR RAORA. TIRSR U PEHnRIRS Wi
chosen to be the midplane strain &, and the curvatures k, and k,,, rather than the conjugate
fcrces and moments, A, M, and MW The reasoa for th(s chiotce s thag, (a the generalized
2-D soluticas of the followmg analysis, €, «, and «,, are constant parameters whereas N,
M, and M,, are functions of x. For the same reason we shall also replace the boundary
momeni M by a constant curvature parameter k2 as one of the specified load parameters
in the formulation of the postbuckling problem.

We seek generalized 2-D postbuckling solutions of the strip delamination model, i.e.,
deformations in which the stress and strain fields are independent of the coordinate y. For
such solutions, the intact and disbonded sublaminates in the right half of the delaminated
plate undergo transverse deflections of the following forms:

w(x,y) = A{cos M(L—x)— 1} +k2x* 2+ Kk xy+K,1°/2, (a<x<L) (2a)
w(x,y) = A{(Asin b/A sin da)(cos la—cos Ax) +cos Ab— 1} +kIx*[2+ K, xy+K,1% /2,
w(x,y) = A{(/sin Ab/A sin Aa)(cos la—cos Ax) +cos Ab— 1} +k2x? /2 + Kk, xy+K,7/2,

O<x<a) (2b,c)

where 4, 2, 4 and 4 are the constants yet to be determined, & = L —a, and where x denotes
the axial coordinate measured from the midpoint of the model. These expressions satisfy
the continuity of deflection and slope at the crack tip and the symmetry conditions at x = 0.
The tangential strains in the middie planes of the three sublaminates have the foliowing
forms:

el =P8, & =e+lcosAL—x), v, =y+ncosi{L—x), (@a<x<L) (3abc)
&) = P+r,hf2, & =e+lcosix, y,, =yp+ncosix, 0<x<a) (3def)

=Bk H2, & =g&+Ecoslx, 7%, =7+7qcosix, (0<x<a). (3ghi)

It will be shown that, with appropriate choices of constant parameters, the deformation
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expressed by eqns (2) and (3) yields stress and moment resultants that satisfy the equilibrium
equations in each sublaminate [eqn (21) in Section 4].

We assume that the sublaminates deform according to the Kirchhoff-Love assumption
of the classical plate theory. Then the strain field in each sublaminate is determined by the
middle-plane strains and the curvatures

KX (x) = W,XX’ EX (x) = E,XX’ ’Ex (x) = W’,XX’

Woy =Wy =Wy S Ky, Woy =Wo =W,

{where the subscript variables following the commas indicate partial differentiation). Conse-
quently, each generalized 2-D postbuckling deformation of the strip delamination model is
completely characterized by the twenty deformation parameters A4, 4, 4, 4, f8, k2, Ky Kyys &,
v, &6 1, & 0, & 7, & and 7. These deformation parameters may be determined in terms
of the temperature load 7(z) and the six specified mechanical load parameters 8, k2, k.
K., Pand S.

The imposed curvature loads k;, are considered to be infinitesimal in the sense that
ks L « t/L. With this assumption, linear strain-displacement relations are valid in the
prebuckling states [where the amplitude parameter 4 of eqn (2) vanishes], i.e., the nonlinear
and non-constant terms w,w./2 are negligible and, therefore, do not affect the spatial
constancy of the prebuckling membrane strains. In the postbuckling stage, the curvatures
k9, k, and k,,, which are determined by the temperature load and the edge constraints,
remain small compared to 7/L?, but the deflections associated with the amplitude parameter
A generally yield significant rotations of the sublaminate midplanes with respect to the y-
axis. Indeed, eqns (2a,b,c) imply that these rotations are of the order 14 and, therefore, are
comparable in magnitude to ¢/L since the amplitude 4 is comparable to 7 in an advanced
stage of postbuckling deformation. Consequently, the nonlinear strain displacement
relations in the postbuckling stage may be written as follows

) = du/ox+(1/2){AAsin A(L—x)}?, &) = dv/dy, 73, = Oufdy+bv/ox, (4a)
= Ju/dx+ (1/2)(AAsin Absin x/sin Aa)®, & = dv/dy, i, = Ou/dy+3dv/ox, (4b)

1
= o

&% = éa/ox+(1/2)(AAsin ibsin Ax/sin da)®, & = d0/dy, 79, = 0u/dy+05/ox, (4c)

¥

where u, v, u, v, @ and & denote the midplane displacements of the three sublaminates.

3. THERMOELASTIC CONSTITUTIVE EQUATIONS OF THE SUBLAMINATES

In the kth layer of the intact or disbonded sublaminate, the in-plane stresses o,, 6, and
1,, depend on the temperature load 7(z) and the middle-plane strains and curvatures
according to the thermoelastic constitutive equation

k
g, £ K. al
0, —Q®[ie) ) —2'{k, t| = — T(2)Q® ¢ &)
Txy y,(‘:y ny OC(\!?

where Q® is a 3 x 3 symmetric elastic matrix and where «%', « and o are the thermal
expansion coefficients of the anisotropic layer. In eqn (5), z’ refers to the thickness coor-
dinate measured from the middle plane of the sublaminate. Hence z is identical to z” in the
intact sublaminate but differs from z’ by amounts H/2 and — /2, respectively, in the upper
and lower disbonded sublaminates.

Integrating the in-plane stress components and their first moments (with respect to the
middle plane of the sublaminate) across the thickness of the successive layers and summing
the results over all layers of the sublaminate, one obtains the stress and moment resultants
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N,=|o.dz, N,={o,dz, N, =[r,dz
M,=—(Z¢,dz, M, = —fz6,dz, M, = —(z1,dz.

If 6., 0, and 7, on the right-hand side of these expressions are replaced, respectively, by
the first, second and third elements of the right-hand side of eqn (5), one obtains, instead,
the thermal forces N¥, N}, N¥, and the thermal moments M¥, M}, M¥,. They stand for the
constant forces and moments that would result from the temperature load 7(z) in the
hypothetical state when the boundary constraints prevent any deformation of the delami-
nation model. The definitions of the thermal forces and thermal moments for the three
sublaminates imply the relations:

Ny = N+ Nl Ml = M+ M4+ 2N —(HDNY  (@,f=1,2). (6)

Furthermore, eqn (5) yields the following thermoelastic constitutive equation of the intact
sublaminate

[ Ne=NE) (82
N,—N¥ €
Nxv_N;k}’ A B ,}}O.
< = R 7
M, — M* ( B D]«
M»—M;k K,
LMX,V_M;‘]’J LKX},

where
A=[4,]=2[Q®dz, B=[B]=—-Z[zZQWdz,
D= [D,] = Z[(z)’Q¥dz, (ij=1,2,6)

and the summations extend over all layers. Constitutive relations of the same form are
valid for the lower and upper disbonded sublaminates, provided that the various quantities
in eqn (7) are replaced by corresponding quantities with underlines and overhead bars.

4. ALGEBRAIC EQUATIONS GOVERNING THE DEFORMATION PARAMETERS OF THE
POSTBUCKLING SOLUTION

It has been shown that, in cylindrical deformation of the strip delamination model
(where k2 = k, = k,, = 0), the equilibrium equations of each sublaminate determine the
deformation parameters 4, ¢, y, ¢ and # of eqns (2) and (3) in terms of N, N,,, N¥, N¥%,, B
and the deflection amplitude A (see Yin, 1994). More general results may be obtained with
the inclusion of the bending and twisting curvatures. In the intact segment, where N, = — P
and N,, = S, the new results accounting for k7, k, and k., are given by

A =(1/0y/(P[D), ®)

€ :(I/A){Alﬁ(_S+ny)_A66(Dj'2t2+Fr)}7 (93)
7= —(1/A){A, (= S+F,)— A41s(DA** + F,)}, (9b)
& =(1/A)(AeeB1/t— A14Bys/1)i7 14, (10a)

Ui =(1/A)(AllBlﬁ/t‘AléBll/t))“ztAa (10b)

where
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AEAIIA66_(A16)2° amn
Ay Ays B/t

D=(1/A)| Ais Ass  Bis/t (12)
B/t Bjt Dyt

and F, and F,, denote the following combinations of the thermal forces and the strain and
curvature loads:

F, = N¥+ A+ Bk + Bk, + Bigk,,, (13a)
ny = Njy+A26ﬂ+B16K)O(+BZGK)'+B66ny' (13b)
Results corresponding to eqns (8)—(13) are given for the lower sublaminate as follows

A Ais Bt
P/ =(1/A)| 416 Aes  Bie/t (=D (14)
B/t B/t D/t

= —(1/A){A\s(=S+F,)—Ass(DA’1*+F)}, (15a)
y=—(1/A) {4, (=S+F,)—As(DA*F +F,)}, (15b)
¢ =(1/A)(A6B16/t— Aes B11/1)04/(sin La), (16a)
ﬂ:(l/é)(élégll/l_éllélﬁ/t)eé/(Sinéa)a (16b)

where —P = N, and S = N, are the membrane forces and
éf(énﬁ“—ﬁ%s)’ a7
0 =(t/a)ALsin b. (18)

F. = N+ A48+ (81, +411h/2)162 + (B2 + 41282k, + (Brs+ A16h/2) Ky, (192)

Fo = N+ A+ (Bis+ A16h/2)K) + (Brg + A26h/2) 1, + (Bes + Assh/2)k,,.  (19b)

Similar results for the upper disbonded sublaminate are obtained by replacing all underline
quantities in eqns (14)—(17) by corresponding symbols with overhead bars, and replacing
F.and F,,, respectively, by the expressions

Fo=F —F =N+ d o+ (B — A H2)KS+ (Bro— A1 H2)k, + (B — A, HI2)k,,
(20a)

Fo=F,—F, = Nt + Ao+ (Big— A1 HI2)KS + (Bag — Ao HI2) K, + (Bes — g H/2)K,,.
(20b)

Substituting the preceding expressions of the deformation parameters into eqns (2)
and (3), one obtains the deflections and the in-plane strains of the sublaminates. Equation
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(7) and similar constitutive equations for the disbonded sublaminates then yield the sub-
laminate forces and moments. It may be verified, by using eqns (1) and (6), that the results
satisfy exactly the equilibrium equations of the von Karman plate theory:

Ng,, = Ngyy = NB}'-}' =0, (=12

My, g, — Ngwg, = Mg, —Ngwg, = M, BBy — N, 5" = 0. @n

Consequently, for a given temperature load 7(z) and given mechanical load parameters §,
Ky, Kys Ky, S, and P = D(A7)?, solution of the postbuckling problem reduces to finding the
deformation parameter 6 and the membrane forces S, S=N,, —P = D(L)* and
— P = N, = D(A)? in the disbonded sublaminates.

These five unknowns may be solved from five algebraic relations resulting from the
continuity of the in-plane displacements at the delamination front and the balance con-
ditions of the axial forces, shearing forces and bending moments, i.e.,

L_l(a, y) = y(a’ ,V) - ([/2) w.x (a’ y)9 ﬁ(a) y) = E(as )’) - (t/Z)any, (228,,b)

P=P+P, S=S5+S M. a) =M. (@)+M/(a)—Ph/2+PH2. (22c,d.e)

By further eliminating the two parameters S and S using eqns (22b,d) and the consti-
tutive equations of the sublaminates, the set of unknown parameters is finally reduced to
8, P = D(A)? and P = D(Ar)>. The system of equations governing these three unknown
parameters is obtained from eqns (22a,c,e) by expressing all other parameters in terms of
6, A, A and the mechanical and temperature loads. After lengthy algebraic manipulations
and using the strain—displacement relation of eqn (4), the governing equations are reduced
to the following explicit forms :

D(la)* + D(la)* = D(Ja)’ (23)

(6a*[1*)*T {esc* Aa— (ctnda)[Aa— csc® Aa+ (cinia)/Aa}

Ay A By +41,4/2)]t A4y Ais DA’ +F,
—40a) 4y, A Bt —GEIO| 4, A, DO +F|=0. Q4
A Ass Be/t Ay Age —S+F,,
/1140 B/t 14, B Jt|\2
0a() {AA(-—\_“ L0 _:l i _11/ )
- é 4]6 gl(,/t A A16 Bls/t

+ T (DAactnA(L—a)+ Diactnia+ Dia ctnia)}

Ay, —T/A Ay A Q@t)z‘i‘fx

T'/A A A D>+ F,
+ / i 16 A"+ —0, (29
A6 Ais Ass —S+F,,
B, /t+ A, hj2t By [t Bt 0

where
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= éllA_‘l'/‘Llé-

When B, k2, &,, k,, and the temperature load are absent, eqns (24) and (25) reduce,
respectively, to eqns (31) and (32) in Yin (1986).

Buckling and postbuckling problems of homogeneous delaminated plates under com-
pression and bending loads were first formulated by Kachanov (1976), who also suggested
a delamination growth criterion based on the strain energy release rate. Plane strain,
cylindrical postbuckling deformation accounting for the interaction of the intact and dis-
bonded segments of a homogeneous plate was formulated and solved by Chai er al. (1981)
and, for delaminated cylindrical shells, by Troshin (1982). An analysis that showed two
different types of postbuckling behavior (depending on the length and the thickness ratios
of the sublaminate vs the based plate) with important implications on the delamination
growth process was given by Yin er al. (1986). The analysis was extended to multilayered
delamination models with arbitrary ply configurations, and exact solutions were obtained
by allowing the membrane strains to depend sinusoidally on the axial coordinate (Yin,
1986 ; 1988). Although such sinusoidal variation of the membrace strains and displacements
is a prominent feature of the solutions of strip delamination models with bending—stretching
coupling, it has not been widely recognized. Previous analytical studies which failed to
include this feature might not yield correct solutions for the buckling load and the post-
buckling deformation. Further generalization in the analysis of strip delamination models
was made by Chen (1991) to include the effects of out-of-plane shear deformation. For
anisotropic delamination models subjected to temperature loads, the usual assumption of
cylindrical deformation is no longer valid, and the present formulation is needed to account
for biaxial bending and twisting of the sublaminates.

We notice that the temperature load 7(z) affects the preceding governing equations
and the postbuckling solution only through the thermal forces N¥ N¥, N¥ and N¥,, and
these effective forces appear only through F,, F,,, F, and F,, as defined, respectively, by
eqns (19) and (20). Given any temperature load 7(z), one can generally replace it with
equivalent increments of the strain and curvature loads, Af, Ak}, Ax, and Ak, such that
the resulting postbuckling solution remains unchanged. These equivalent increments in f,
Ky, k,, K,, are given by the solutions of the linear equations

A AB+(B), — 411 H[2) Ak} + (Bi; + A12h/2) Ak, + (B + 416h/2) Ak, = N,

Are A+ (Bis — A16H/2) Ak + (Bys + A26h/2) Ak, +(Bge + Aesh/2) Ak, = N

L¥xys
1‘112 A.B+(B-11 _/‘IIIH/Z) Ak +(Blz —/Ile/2) AKy+(ElG ‘/?161'1/2) A'ny = N¥,
Ay A+ (Bio— A\ H/2) Ak + (Brs — A26 H[2) AKy+(E66 — A H[2) Ak, = N:

Thus, in general, the thermoelastic postbuckling problem of the strip delamination model
may be reduced to a purely mechanical problem when the original strain and curvature
loads 8, k2, k, and k., are replaced by S+ AB, k? + Ak?, k,+ Ax, and k,,+ Ak,,, respectively.
Exceptions to this statement occur in some degenerate cases, including homogeneous
isotropic delaminated plates, when the preceding equations for Af, Ak?, Ak, and Ak,, have
no solutions due to the singularity of the coefficient matrix.

For the postbuckling solutions of the present analysis, the boundary value of the axial
moment, M = M (L), is determined by the thermal and mechanical loads and the deflection
amplitude A4 according to the fourth row of eqn (7). One has

Ay A DA +F,
A Ags —S+F,, = D ABla/(sin b). (26)
B/t B/t _M+M;ck+B12ﬁ+Dl1K2+D12Ky+Dl6ny

Hence, in a slightly different formulation of the postbuckling problem, where f, x,, k.,, 4,
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S and M (instead of B, k,, k,,, 4, S and k7)) are taken to be specified mechanical load
parameters accompanying the temperature load, the reduced set of governing algebraic
equations, eqns (23)—(25), must be augmented by eqn (26) to determine a set of four
deformation parameters 6, A, A and 2. Notice, that in this case, the final expression for the
postbuckling solution will involve the thermal moment M} because eqn (26) contains the
combination — M+ M¥

5. POSTBUCKLING DEFORMATION AND THE ENERGY RELEASE RATE

The separation of the two disbonded sublaminates at x = 0 is given by
w(0) — w(0) = 1(8a’/1*){tan(Aa/2)/(Aa) — tan(ia/2)/(Aa)}. (27)

This relation is valid regardless of the temperature load. Notice that eqn (44) of Yin (1986)
is incorrect and should be replaced by the preceding expression. The deflections given by
eqns (2b) and (2¢) are physically possible only if &, > k, at x = a. Otherwise the actual
postbuckling solution should be obtained by considering contact of the upper and lower
disbonded sublaminates in an interval adjacent to the crack tip. For given mechanical and
thermal loads P, S, B, x9, ,, k., and T(z), eqns (23)—(25) may be solved for the reduced
set of unknown parameters 6, 4 and 1. Equations (2a,b,c) and (18) then yield the deflection
functions of the sublaminates. All parameters in the expressions of the membrane strains,
eqns (3a-i), are given by eqns (9), (10), (15), (16) and by similar equations of the upper
sublaminate.

Under sufficiently large mechanical and thermal loads, the force and moment resultants
at the crack tip may cause severe interlaminar peeling and shearing actions ahead of the
delamination crack and may initiate delamination growth. An important measure of the
crack driving force is the energy release rate G. On the basis of the laminated plate theory,
G may be expressed in terms of the midplane strains and the curvatures of the sublaminates
at the crack tip. The expression may be derived either by considering local energy balance
as the crack advances an infinitesimal distance, or by evaluating the path-independent J-
integral (Yin and Wang, 1984 ; Yin, 1986). The result is presented here in a concise form:

I‘Ill /Iua B]l 411 4[6 §11
G=1/2{Ae}"| A,y Age B |[{A2}+1/2{Ae}"|A\s Ass  Bie |{Ae], (28)
1‘111 1‘116 Dy, B, B Dy,

where
{AE}T = {gg - (82 - KxH/z)a ')72} - ('})2}, - nyH/z)a R:x - Kx}’
(Ae}T = () — (2 +1,h/2), 7%, — (¥ + K h[2), K — K},

are evaluated at the crack tip and where {Az} and {A¢} are the corresponding column
vectors. Notice that this expression does not explicitly involve ff and k,. Alternatively, G
may be given in terms of N,—N¥, M,;—M}¥y, Ny—N¥Y, M,—M¥%, N,,—N¥% and
M.,; — M}, by using eqn (7) and the corresponding constitutive equations for the disbonded
sublaminates (Yin, 1998).

We note that eqn (28) applies to a 2-D delamination of arbitrary shape if the x- and
y-axes (i.e., the referential axes for the components of the mid-plane strains and curvatures
and for the various stiffness matrices of the intact and delaminated sublaminates) are
replaced, respectively, by the in-plane local axes normal and tangential to the delamination
front (Yin, 1996). This expression, given in terms of the local strains and curvatures,
remains valid when the mechanical load is accompanied by a general temperature load
T(x,y,z), provided that the latter is continuous across the delamination front. This is
because, as the crack front advances by an infinitesimal distance Aa, there are sudden
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changes in the strains and curvatures as the intact segment splits in the process zone but
there is no sudden change in the potential energy associated with the thermal strain if the
temperature field is continuous. Consequently, eqn (28) remains valid regardless of the
presence or absence of the thermal strain. On the other hand, the alternative form of G in
terms of the stress and moment resultants in the sublaminates (or a mixed expression in
terms of both kinetic and kinematic quantities of the sublaminates) will involve both
mechanical and thermal forces.

For a delamination crack between two layers of identical material with the same
orientation, the energy release rate may be separated into three components associated,
respectively, with the peeling action and the two modes of out-of-plane shear action.
Delamination growth criteria that discriminate among the three distinct fracture modes may
be formulated in terms of the three modal components of G. However, modal separation of
G cannot be achieved within the context of the laminated plate theory; it requires a
asymptotic elasticity solution near the crack tip for the determination of the ratio of the
corresponding stress intensity factors. For interface cracks between two dissimilar elastic
layers, the energy release rate generally cannot be partitioned into separate modal
components. There are no states of loading that yield pure mode I or mode II behavior at
the crack tip, and the shearing and peeling actions are intrinsically intertwined in the
asymptotic solution. An analysis procedure for accurately determining the local elasticity
solution along the crack front of a general 2-D delamination has been developed elsewhere
(Yin, 1996 ; 1997), based on the computed sublaminate forces and moments which provide
boundary traction data along a small circular path that encircles the crack tip. The elasticity
solution is given in terms of a complex eigenfunction series and the dominant singular term
of the series determines the asymptotic solution and the complex stress intensity factor.

6. RESULTS

We consider delaminations in multilayered B(4)/5505 boron/epoxy laminates and in
homogeneous isotropic plates with a moderate expansion coefficient. For the boron/epoxy
composite the layer properties are taken from Tsai and Hahn (1980), i.e., E; = 204 GPa,
E, =18.5GPa, G, = 5.59 GPa, v =0.23, o, = 6.1 x 107%/°K and a, = 30.3x 107%/°K. In
order that results comparable in magnitude may be obtained for the homogeneous delami-
nated plates, the isotropic material is assumed to have a thermal expansion coefficient
10.0 x 10~%/°K and Poisson’s ratio 0.3. The bifurcation loads of strip delamination models
made of such materials have been determined by Yin (1994).

Although B, k7, k,, k,, and the in-plane shearing force § generally affect the post-
buckling solution, the essential features of postbuckling response may be found by con-
centrating on the effects of axial compression and the temperature load. Therefore, post-
buckling solutions will be computed in the following analysis under the assumption that
B =« =x, =k, =8 =0.To be specific, we also assume that the temperature load varies
linearly across the thickness, and assumes the values T, = — 7, 0 and T, respectively, on
z= —1{2, 0 and #/2. We note that, while a uniform temperature load does not affect the
postbuckling deflection of a homogeneous delamination model under a force-controlled
axial compression P, it generally changes the solution of a multilayered delamination model
because of the presence of the thermal forces in eqns (24) and (25).

It is convenient to normalize the axial load P with respect to the axial bifurcation load
of an otherwise identical clamped laminate without delamination, P?, = (n#/L)*D. This
yields

P = P/P% =(P/D)(L/nn)>. (29)

For the postbuckling solutions of a homogeneous isotropic plate with a moderately deep
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Fig. 2a. Postbuckling energy release rate for a delamination in a homogeneous isotropic plate,
hit =1/4,a/L = 0.3.
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Fig. 2b. Midpoint separation. Delamination in a homogeneous isotropic plate, 4/t = 1/4, a/L = 0.3.

delamination (4/t = 1/4 and a/L = 0.3), the energy release rates and the midpoint sep-
arations are shown in Figs 2a and b, respectively, for seven values of £ and for increasing
values of the temperature gradient. The corresponding results for a relatively shallow and
short delamination (with 4/t = 1/8 and a/L = 0.15) are shown in Figs 3a and b.

Significant amounts of midpoint separation and energy release rate generally occur in
a relatively advanced stage of postbuckling deformation. In this stage one may find a simple
approximate relation between the energy release rate and the midpoint separation. Let the
separation be normalized with respect to 4 (rather than the laminate thickness ), and let G
be normalized with respect to (h/a)* times the axial extensional stiffness of the thinner
disbonded sublaminate (rather than (¢/L)* times the axial stiffness of the intact sublaminate).
Then, for the new normalized variables G and 8, the following approximate relation is
valid :
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Fig. 3a. Postbuckling energy release rate for a delamination in a homogeneous isotropic plate,
hjt = 1/8, a/L = 0.15.
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Fig. 3b. Midpoint separation. Delamination in a homogeneous isotropic plate, 4/t = 1/8,a/L = 0.15.

2(4/n)*G = 6*{6> +64D}(A,,h)} (30)
where

G =(a/h)*GjA,,, &= {Ww(0)—w(0)}/h.

This exceedingly simple relation halds exactly in the limit of a thin-film delamination mode,
and may be easily derived from eqns (11) and (16) of Yin (1988) when the temperature
load and the bending and twisting curvatures are absent. A more general derivation shows
that, with the inclusion of the temperature and curvature loads, eqn (30) is still valid in the
limit of a thin-film delamination.
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Fig. 4. Midpoint separation vs normalized energy release rate, delamination models with various
thickness and length ratios.

The results of Figs 2a, b and 3a, b, and additional results corresponding to two other
combinations of the thickness and length ratios are presented in Fig. 4 in terms of the new
normalized quantities, G and 8. Deviations of the curves from the relation of eqn (30)
(shown by the lowest curve in Fig. 4) indicate the errors associated with the thin-film
approximation. Itis found that, for a very thin delamination with 4/t = 1/40 and a/L = 1/20,
the results agree very closely with eqn (30). For other combinations of the thickness and
length ratios, the agreement is sufficiently close whenever the midpoint separation is smaller
than the thickness of the upper disbonded sublaminate. But if the latter condition is not
satisfied, then the accuracy of the present postbuckling solutions (which are based on the
von Karman theory of plates) becomes doubtful as well. In all cases, the results of Fig. 4
suggest that eqn (30) overestimates the energy release rate for a given midpoint separation.
Hence if % and the midpoint separation are measured experimentally and if G is estimated
by using eqn (30), a conservative prediction of delamination fracture can be obtained and
the estimation of the energy release rate is close if the measured separation is comparable
to or smaller than A.

For symmetric, eight-layer, cross-ply boron/epoxy laminates with a delamination on
the second highest and the highest interface, respectively, the postbuckling energy release
rates are shown in Figs 5 and 6 for several values of the axial load and as functions of the
temperature gradient. The corresponding results for delaminated 45° angle-ply laminates
are shown in Figs 7 and 8. Since the thermal expansion coefficients of the unidirectional
boron/epoxy composite have a ratio of nearly 5:1 in the transverse direction compared to
the fiber direction, the angle-play configuration is more prone to the destabilizing effect of
a temperature gradient. Hence the curves in Figs 7 and 8 are steeper than those of Figs 5
and 6.

Consider a delaminated plate with L/t = 25 subjected to a temperature load with
Ty— T, = 80°K. This yields 10~5(T,— T,)(L/t)*> = 0.05. Under a given mechanical load P,
the imposition of this modest temperature load may significantly and even drastically
increase the midpoint separation and the energy release rate in the postbuckling regime.
This may be seen, for example, by comparing the values of G for each curve in Fig. 5 (or
the values of the midpoint separation for each curve in Fig. 2b) at the two points with
horizontal coordinates 0 and 0.05. Because the curves associated with greater # have
larger slopes, they indicate greater effects of the temperature load upon the postbuckling
deformation and the energy release rate.
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Fig. 5. Postbuckling energy release rate. Delamination in the second interface from the top of a
[(0/90),], boron/epoxy laminate.
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Fig. 6. Postbuckling energy release rate. Delamination in the first interface from the top of a
[(0/90),], boron/epoxy laminate.

7. SUMMARY AND CONCLUDING REMARKS

Postbuckling solutions of anisotropic strip delamination models under combined
mechanical and temperature loads have been obtained on the basis of the laminated plate
theory and under the assumption of generalized 2-D deformation. The model may be
subjected to biaxial bending and twisting, in addition to in-plane compression and shearing
forces. In the absence of transverse bending and twisting curvatures, the present post-
buckling solutions are exact in the context of the laminated plate theory. Due to bending-
extension coupling, the middle-plane strains of the intact and disbonded sublaminates vary
sinusoidally with the axial coordinate, even though the in-plane forces are constant in each
sublaminate. The effects of the temperature field on the buckling load and the postbuckling
deformation are completely characterized by the thermal forces in the disbonded subla-
minates, i.e., N¥ N*, N¥and N¥%.
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Fig. 7. Postbuckling energy release rate. Delamination in the second interface from the top of a
[(45/—45),], boron/epoxy laminate,
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Fig. 8. Postbuckling energy release rate. Delamination in the first interface from the top of a
[(45/ —45),]; boron/epoxy laminate.

The three equations (23)—(25) governing the reduced set of deformation parameters 0,
4 and 1 show explicitly the effects of mechanical and temperature loads and of the stiffness
and geometrical parameters on postbuckling behavior. Because the delamination model
consists of multilayered sublaminates with arbitrary ply configurations and because the
analysis encompasses thermal and mechanical loads including biaxial bending and twisting,
a very large class of analytical solutions may be easily obtained by solving the three algebraic
equations. The various parameters regarding geometry, material properties and loading
may be selected so that the model may closely approximate composite beams and panels in
aerospace applications and may provide useful results for assessing damage tolerance of
the components.

Analysis results show that a temperature gradient in the thickness direction may
significantly increase the midpoint separation of the disbonded sublaminates and the energy
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release rate associated with postbuckling delamination growth. Furthermore, the greater
the axial compression force, the more threatening is the aggravating effect of the temperature
load.

A general expression of the total energy release rate is given by eqn (28) in terms of
the local membrane strains and curvatures of the sublaminates at the delamination front.
The validity of this expression is unaffected by a temperature load that accompanies the
mechanical load. In the limiting case of thin-film strip delamination, the expression reduces
to an exceedingly simple relation, eqn (30), between the normalized energy release rate and
the normalized midpoint separation J. This relation is useful in estimating the threat of
delamination damage because é may be found by direct measurement. The present solutions
all indicate that, for an observed separation, the use of the approximate relation of eqn
(30) in a delamination growth criterion yields conservative prediction of growth initiation
because eqn (30) yields a greater result of G than does eqn (28).
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